首页> 外文OA文献 >Centralized Power Control in Cognitive Radio Networks Using Modulation and Coding Classification Feedback
【2h】

Centralized Power Control in Cognitive Radio Networks Using Modulation and Coding Classification Feedback

机译:基于调制和编码分类反馈的认知无线电网络集中功率控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a centralized Power Control (PC)scheme and an interference channel learning method are jointlytackled to allow a Cognitive Radio Network (CRN) access tothe frequency band of a Primary User (PU) operating basedon an Adaptive Coding and Modulation (ACM) protocol. Thelearning process enabler is a cooperative Modulation and CodingClassification (MCC) technique which estimates the Modulationand Coding scheme (MCS) of the PU. Due to the lack ofcooperation between the PU and the CRN, the CRN exploitsthis multilevel MCC sensing feedback as implicit channel stateinformation (CSI) of the PU link in order to constantly monitorthe impact of the aggregated interference it causes. In this paper,an algorithm is developed for maximizing the CRN throughput(the PC optimization objective) and simultaneously learning howto mitigate PU interference (the optimization problem constraint)by using only the MCC information. Ideal approaches for thisproblem setting with high convergence rate are the cuttingplane methods (CPM). Here, we focus on the analytic centercutting plane method (ACCPM) and the center of gravity cuttingplane method (CGCPM) whose effectiveness in the proposedsimultaneous PC and interference channel learning algorithm isdemonstrated through numerical simulations.
机译:在本文中,集中讨论了功率控制(PC)方案和干扰信道学习方法,以允许认知无线电网络(CRN)访问基于自适应编码和调制(ACM)运行的主要用户(PU)的频带协议。学习过程使能器是一种协作调制和编码分类(MCC)技术,用于估计PU的调制和编码方案(MCS)。由于PU和CRN之间缺乏协作,因此CRN利用此多级MCC感测反馈作为PU链路的隐式信道状态信息(CSI),以便不断监视其引起的聚集干扰的影响。本文提出了一种算法,该算法可最大化CRN吞吐量(PC优化目标),同时仅通过MCC信息学习如何减轻PU干扰(优化问题约束)。具有高收敛速度的此问题设置的理想方法是切割平面方法(CPM)。在这里,我们集中于解析中心切割平面方法(ACCPM)和重心切割平面方法(CGCPM),其在拟议的同时PC和干扰信道学习算法中的有效性通过数值模拟得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号